# D<sup>2</sup> ANALYSIS FOR ESTIMATING GENETIC DIVERGENCE IN SESAME GENOTYPES (Sesamum indicum L.)

GOKULAKRISHNAN, J.,<sup>1\*</sup> B. PRIYA<sup>2</sup> AND S. SARASWATHY<sup>2</sup>

<sup>1</sup>Assistant professor, Department of Genetics and Plant Breeding, Annamalai University <sup>2</sup>PG Scholar, Department of Genetics and Plant breeding, Annamalai University

\*Corresponding Author Email: gokulayamuna@gmail.com

#### ABSTRACT

Sesame is an important traditional oilseed crop cultivated throughout India. Genetic divergence was studied based on Mahalanobis  $D^2$  statistic and grouping of cluster was done among the 30 genotypes for ten quantitative traits following Tocher's method. The analysis of variance showed significant difference among the genotypes for all the characters studied. The genotypes were categorised into eight clusters based on the genetic distance and mean of different characters. The clustering pattern indicated that there is no association between geographical distribution of genotypes and genetic divergence. The minimum intra-cluster distance (D = 5.75) was observed in cluster II and the maximum distance and the maximum inter cluster distance was observed between the clusters III and VIII. Cluster VIII recorded maximum cluster mean for the characters namely plant height at maturity, number of branches, number of capsules per plant, capsule breadth, number of seeds per capsule, 1000 seed weight and seed yield per plant. The characters viz., days to 50% flowering contributed the maximum (39.31%) for the genetic divergence followed by seed yield per plant (20.68%) and 1000 seed weight (15.63%). The genotype VRI 1registered maximum mean among all the quantitative traits followed VRI 1, GT 10 and VRI 2 hold great potential for improving and stabilizing the seed yield.

## *Key words:* sesame, D<sup>2</sup> analysis, Genetic divergence. INTRODUCTION

Sesame (*Sesamum indicum* L.) 2n = 22, Fabaceae is an important oilseed crop which is widely cultivated and consumed throughout India. Genetic improvement mainly depends upon the amount of genetic variability present in the base population and serves as a valuable source for providing wide variability. Genetic diversity is an important factor and also a prerequisite in any hybridization programme. Inclusion of diverse parents in hybridization programme serves the purpose of combining desirable recombination.

Multivariate analysis of means of Mahalanobis  $D^2$  statistic is a powerful tool in quantifying to degree of divergence at genotypic level. Therefore, an attempt has been made in the present investigation with a view of estimate genetic divergence among a set of thirty genotypes of sesame.

#### **MATERIALS AND METHODS**

The study was conducted at Plant Breeding Farm, Annamalai University, Chidambaram. The 30 genotypes were raised in randomized block design (RBD) with three replications. Each genotype was sown in a plot consisting of two rows of 4.5 m in length with a spacing of  $30 \times 15$  cm. Recommended agronomic and plant protection measures were followed by raise a healthy crop. Observations were recorded on five randomly selected plants per replication for quantitative traits namely days to 50 per cent flowering, days to maturity, plant height, number of branches per plant, number of capsules per plant, capsule length, capsule breadth, number of seeds per capsule, 1000 seed weight and seed yield per plant. The data were subjected to Mahalanobis D<sup>2</sup> statistics as per Mahalanobis (1936) method and genotypes were grouped into different clusters following Toucher's method suggested by Rao (1952).

#### **RESULTS AND DISCUSSION**

The analysis of variance showed significant differences between sesame genotypes for all the characters studied. All the thirty genotypes were grouped into eight clusters (Table 1). The maximum number of genotypes were included in the cluster III (8 genotypes), followed by cluster IV (7 genotypes), cluster VI (4 genotypes), cluster I and V (3 genotypes), cluster II and VII (2 genotypes) and cluster VII (1 genotype solitary). The pattern of group constellations indicated that significant variability existed among the genotypes as observed from the clusters. The clustering pattern in the present study indicates that the genotypes from different sources clustered together showing that there was no association between clustering pattern and geographic distribution of genotypes. Similar findings were reported by Ganesan and Thangavelu (1996), Manivannan and Nadarajan (1996) and Gupta *et al.* (2001).

The intercluster III and VIII (38.25) followed by cluster III and VI (34.25). The minimum intercluster distance was found between cluster V and VII (11.41). Hybridization among the genotypes between cluster VIII and III is likely to produce heterotic hybrid and transgressive segregants. Cluster VIII showed maximum cluster mean for six characters *viz.*, plant height, number of capsules per plant, capsule breadth, number of seeds per capsule, 1000 seed weight and seed yield per plant. Cluster VI recorded highest mean value for number of branches per plant and capsule length whereas cluster III recorded highest mean value for. Days to 50% flowering and days to maturity.

The selection and choice of parent mainly depend upon contribution of character towards divergence (Loganathan *et al.*, 2001) and the contribution towards genetic divergence is represented in Table 4. It was observed that among all the traits, contribution of days 50% flowering was maximum (39.31%) followed by seed yield per plant (20.68%). Similar findings were observed by Tripathi *et al.* (2013). In addition, 1000 seed weight (15.63%), days to maturity (10.11%), number of capsules per plant (5.51%), number of seeds per capsule (3.90%) also contributed maximum towards the genetic divergence. Average intra and inter cluster distances among thirty genotypes revealed that the genetic diversity between the genotypes in cluster III showed a maximum intra cluster distance of 22.12 (Table 2) and it indicated that the genotypes within the cluster were more diverse while cluster II showed minimum intra cluster distance of 5.75.

It is well known that crosses between divergent parents usually produce greater heterotic effect than closely related ones. Considering the importance of character towards total divergence, the present study indicated that parental lines selected from cluster VIII (VRI 2) for plant height, number of branches, number of capsules per plant, capsule breadth, number of seeds per capsule, 1000 seed weight and seed yield per plant and from cluster VI (SVPR 1, TMV 3, VRI 1, VSO-07-23) for seed yield per plant could be used in crossing programme to achieve desire segregants.

#### REFERENCES

Ganesan, S.K. and S. Thangavelu. 1996. Genetic divergence in sesame. Madras Agric. J., 82: 263-265.

- Gupta, R.R., B.M.S. Parihar and P.K. Gupta. 2001. Genetic diversity for some metric characters in sesame (*Sesamum indicum* L.). *Crop Res.*, **21(3):** 350-354.
- Loganathan, P.K., Saravanan and J. Ganesan. 2001. Genetic analysis of yield and related components in greengram (*Vigna radiata* L.). *Research Crops*, **1**: 34-36.

Mahalanobis, P.C. 1936. On the generalized distance in the statistics. *Proc. Natnl. Ins. of Sci. India*, **2:** 49-55.

Manivannan, N. and N. Nadarajan. 1996. Genetic divergence in sesame. Madras Agric. J., 83(12): 789-790.

Rao, C.R. 1952. Advanced statistical methods in biometric research. John Wiley and Sons, Inc., New York.

Tripathi, A., R. Bisen, R.P. Ahirwal, S. Paroha, R. Sahu and A.R.G. Ranganatha. 2013. Study on genetic divergence in sesame (*Sesamum indicum* L.) germplasm based on morphological and quality traits. *The Bioscan.*, 8(4): 1387-1391.



| S. No. | Varieties / Cultures | Seed coat colour  | Origin                  |  |  |
|--------|----------------------|-------------------|-------------------------|--|--|
| 1      | TKG 306              | White             | Tikamgarh, M.P          |  |  |
| 2      | MT 75                | White             | Kanpur, U.P             |  |  |
| 3      | GT 1                 | White             | Amreli, Gujarat         |  |  |
| 4      | RT 346               | White             | Bikaner                 |  |  |
| 5      | YLM 66               | Brown             | Andhra Pradesh          |  |  |
| 6      | THILATHARA           | Blackish brown    | Kayamkulam, Kerala      |  |  |
| 7      | GT 2                 | White             | Amreli, Gujarat         |  |  |
| 8      | RT 46                | White             | Bikaner                 |  |  |
| 9      | GT 3                 | White seed        | Amreli, Gujarat         |  |  |
| 10     | JTS 8                | White             | Tikamgarh, M.P.         |  |  |
| 11     | SAVITRI              | Light brown seeds | Berhampore, West Bengal |  |  |
| 12     | GT 10                | Black             | Amreli, Gujarat         |  |  |
| 13     | YLM 11               | Brown             | Andhra Pradesh          |  |  |
| 14     | TKG 55               | White             | Tikamgarh, M.P          |  |  |
| 15     | NIRMALA              | White             | Orissa                  |  |  |
| 16     | THILAK               | Blackish brown    | Kayamkulam, Kerala      |  |  |
| 17     | JTS 8                | Whit seed         | Tikamgarh, M.P          |  |  |
| 18     | TKG 22               | White             | Tikamgarh, M.P          |  |  |
| 19     | VS-0-24              | White             | Tindivanam              |  |  |
| 20     | RT 127               | White             | Mandore, Rajasthan      |  |  |
| 21     | TMV 6                | Brown             | Tindivanam              |  |  |
| 22     | SVPR 1               | White             | Srivilliputhur          |  |  |
| 23     | PAIYUR 1             | Black             | Paiyur                  |  |  |
| 24     | TMV 3                | Dark brown        | Tindivanam              |  |  |
| 25     | VRI (SV) 1           | Brown             | Virudhachalam           |  |  |
| 26     | TMV 4                | Brown             | Tindivanam              |  |  |
| 27     | TMV 5                | Brown             | Tindivanam              |  |  |
| 28     | VS07-23              | White             | Tindivanam              |  |  |
| 29     | VSO-15-1             | White             | Tindivanam              |  |  |
| 30     | VRI (SV) 2           | Reddish brown     | Virudhachalam           |  |  |

Table 1. List of survived genotypes selected for D<sup>2</sup> analysis

| Clusters | Number of genotypes | Name of the genotypes                                        |  |
|----------|---------------------|--------------------------------------------------------------|--|
| Ι        | 3                   | TKG 306, YLM 11, VSO 24                                      |  |
| II       | 2                   | RT 46, GT 3                                                  |  |
| III      | 8                   | MT 75, GT 1, YLM 66, THILATHARA, GT 2, RT 346, JLT 7, TKG 55 |  |
| IV       | 7                   | SAVITRI, GT 10, NIRMALA, THILAK, JTS 8, TKG 22,<br>RT 127    |  |
| V        | 3                   | TMV 6, PAIYUR 1, TMV 4                                       |  |
| VI       | 4                   | SVPR 1, TMV 3, VRI 1, VSO-07-23                              |  |
| VII      | 2                   | TMV 5, VSO-15-1                                              |  |
| VIII     | 1                   | VRI 2                                                        |  |



| Clusters | Ι                 | п                 | III               | IV                 | V                 | VI                 | VII               | VIII               |
|----------|-------------------|-------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|
| Ι        | 449.69<br>(21.20) | 242.70<br>(15.57) | 551.35<br>(23.48) | 340.20<br>(18.44)  | 453.08<br>(21.28) | 556.37<br>(23.58)  | 468.32<br>(21.64) | 688.39<br>(26.23)  |
| II       |                   | 33.09<br>(5.75)   | 347.40<br>(18.63) | 229.05<br>(15.13)  | 484.14<br>(22.00) | 665.12<br>(25.79)  | 461.33<br>(21.47) | 940.85<br>(30.67)  |
| III      |                   |                   | 489.34<br>(22.12) | 686.84<br>(26.208) | 484.58<br>(22.01) | 1173.47<br>(34.25) | 451.14<br>(21.24) | 1463.07<br>(38.25) |
| IV       |                   |                   |                   | 292.62<br>(17.10)  | 697.09<br>(26.40) | 490.27<br>(22.14)  | 688.23<br>(26.23) | 643.15<br>(25.36)  |
| V        |                   |                   | JK                |                    | 128.41<br>(11.33) | 758.98<br>(27.55)  | 130.21<br>(11.41) | 881.82<br>(29.69)  |
| VI       |                   |                   | A. C. C.          |                    | AT .              | 232.36<br>(15.24)  | 839.40<br>(28.97) | 252.43<br>(15.88)  |
| VII      |                   |                   |                   |                    |                   |                    | 267.65<br>(16.36) | 1003.70<br>(31.68) |
| VIII     |                   |                   |                   |                    |                   |                    |                   | 0.00<br>(0.00)     |

E

Table 3. Intra and inter (diagonal) cluster average of D<sup>2</sup> and D (values in parentheses) and the extentof diversity among the clusters of sesame genotypes

| Sl.<br>No. | Cluster      | Days to<br>50%<br>flowering | Days to<br>maturity | Plant<br>height at<br>maturity<br>(cm) | Number<br>of<br>branches | Number<br>of<br>capsules<br>per plant | Capsule<br>length<br>(mm) | Capsule<br>breadth<br>(mm) | Number<br>of seeds<br>per<br>capsule | 1000 seed<br>weight (g) | Seed yield<br>per plant<br>(g) |
|------------|--------------|-----------------------------|---------------------|----------------------------------------|--------------------------|---------------------------------------|---------------------------|----------------------------|--------------------------------------|-------------------------|--------------------------------|
| 1          | Ι            | 46.66                       | 87.77               | 76.38                                  | 5.18                     | 53.55                                 | 24.44                     | 5.55                       | 51.77                                | 2.66                    | 3.37                           |
| 2          | Π            | 48.00                       | 88.16               | 59.41                                  | 2.36                     | 25.50                                 | 27.50                     | 5.33                       | 49.00                                | 1.90                    | 1.81                           |
| 3          | III          | 52.91                       | 90.95               | 62.00                                  | 3.59                     | 47.87                                 | 24.33                     | 5.33                       | 50.79                                | 2.17                    | 2.22                           |
| 4          | IV           | 43.50                       | 87.33               | 63.33                                  | 3.73                     | 37.95                                 | 23.81                     | 5.57                       | 55.04                                | 2.27                    | 3.84                           |
| 5          | V            | 52.27                       | 87.11               | 89.18                                  | 5.50                     | 109.11                                | 24.55                     | 4.88                       | 55.77                                | 2.70                    | 4.41                           |
| 6          | VI           | 41.04                       | 78.66               | 79.58                                  | 6.44                     | 82.83                                 | 28.25                     | 5.08                       | 55.08                                | 2.81                    | 7.18                           |
| 7          | VII          | 52.16                       | 89.83               | 78.50                                  | 6.00                     | 104.50                                | 24.83                     | 4.50                       | 61.33                                | 2.70                    | 4.21                           |
| 8          | VIII         | 38.33                       | 81.66               | 106.43                                 | 5.66                     | 102.66                                | 19.00                     | 5.33                       | 55.66                                | 2.81                    | 10.53                          |
|            | General mean | 46.85                       | 86.43               | 76.85                                  | 4.80                     | 70.49                                 | 24.58                     | 5.19                       | 54.30                                | 2.50                    | 4.69                           |

# Table 4. Cluster means values of ten quantitative traits of sesame

| S. No. | Characters                   | Contribution towards divergence (%) |  |  |  |  |
|--------|------------------------------|-------------------------------------|--|--|--|--|
| 1      | Days to 50% flowering        | 39.31                               |  |  |  |  |
| 2      | Days to maturity             | 10.11                               |  |  |  |  |
| 3      | Plant height                 | 2.29                                |  |  |  |  |
| 4      | Number of branches per plant | 0.22                                |  |  |  |  |
| 5      | Number of capsules per plant | 5.51                                |  |  |  |  |
| 6      | Capsule length (mm)          | 1.14                                |  |  |  |  |
| 7      | Capsule breadth (mm)         | 1.14                                |  |  |  |  |
| 8      | Number of seeds per capsule  | 3.90                                |  |  |  |  |
| 9      | 1000 seed weight (g)         | 15.63                               |  |  |  |  |
| 10     | Seed yield per plant (g)     | 20.68                               |  |  |  |  |

### Table 5. Contribution of different characters towards genetic divergence